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Why Not Pi? 
A Primer on Neural Networks for Forecasting 

 
By J. Stuart McMenamin, Ph.D. 

 
The Question 
At a recent conference, a group of electric utility forecasters1 was discussing the relative merits of 
econometric models and artificial neural network models for forecasting problems.  In the course of this 
discussion, the topic of functional form surfaced repeatedly.  At the heart of most neural network 
specifications are S-shaped curves using the binary logistic function, which is based on e (2.71828…).  
This brought up a lively debate.  Why not 3?  In fact, why not π (3.14159...).  After all, it was argued, the 
18th century mathematician Euler is credited with assigning both letters (e and π) to their respective tasks.  
And π, sometimes referred to as Archimedes’ number, has been around a lot longer.  So, why not π?  
 
In the end, we will put this question to the test based on forecast performance.  In the interim, however, 
we use the opportunity provided by this question to lay out the issues associated with neural networks 
from a forecaster’s perspective.  In fact, in large part the question (Why not π?) is just an excuse to think 
about exactly what a neural network is and how it can be used by forecasters.   
 
Background 
A large amount of confusion seems to surround the topic of neural networks.  In part, this reflects the fact 
that a different language is used for neural networks than is used in the more familiar (to forecasters) area 
of econometrics.  Having struggled with this linguistic disconnect for about two years, we can assure you 
that bridging the gap is difficult without a translation dictionary.   
 
To focus on specific elements of the language, the discussion is put in Q & A format.  The questions 
involve issues that we have had to deal with over the last few years in the process of specifying and 
estimating neural network models, econometric models, and combined models in the context of monthly 
sales forecasting and hourly load forecasting problems for electric utilities.  The answers come from the 
perspective of forecasters, and our goal is to make the relationship between concepts in neural network 
modeling and traditional econometric concepts as clear as possible.  
 

                                                           
1 The inspiration for this paper came from a discussion between the author, Frank Monforte, Eric Fox, Joel 

Gaughan, Frank Ferris, and Brian Harkleroad.  The event was the Electric Power Research Conference on New 
Directions in Forecasting held in Dallas in November 1996, at which much was said about the use of neural 
networks in forecasting. 
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So let’s start with some basic questions. 
 
Q.  What exactly is a neural network?  
 
A.  Artificial neural networks, as they are used in forecasting, are flexible nonlinear models that can 
approximate a wide range of data generating process.  In general form, for a single-variable forecasting 
problem, an artificial neural network looks like this:  
 
 Y = F(X, B) + u 
 
Of course, the X’s might be lagged Y’s.  And there could be several X’s.  And there could be lots of B’s.  
In this general form, this is nothing new.  However, most functions of this general form, including all 
functions that we normally use in forecasting, do not qualify as neural networks, except as degenerative 
cases.  
 
Although neural networks can take many forms, the most frequently used form is very specific and can be 
written as follows:  
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The thing that makes this different is the repetitive nature of the specification.  That is, within the 
summation, the function in parentheses is repeated N times with exactly the same algebraic form.  
 
In network jargon, equation (1) is called a single-output feedforward artificial neural network, with a 
single hidden layer, with N nodes in the hidden layer, with logistic activation functions in the hidden layer, 
and with a linear activation function at the output layer.  
 
To the forecaster, however, it is best to think about this specification as a flexible form that is nonlinear in 
the variables and the parameters.  The form is flexible in that it allows for a wide variety of nonlinearities 
and interactions among the explanatory variables, and the repetitive specification is the cornerstone of this 
claim to flexibility.  
 
Q.  How can I get a better understanding of how equation (1) works?  
 
A.  It is easiest to understand this nonlinear function by looking at a simple example.  If the number of 
explanatory variables (K) is 3, and the number of nodes (N) is 2, then the network function takes the 
following form:  
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In this expression, e is the transcendental number, 2.71828…  Given values for the explanatory variables 
and a set of parameter values (the Bs’, a’s, and b’s) we can easily compute the predicted values and 
residuals for each observation.  The estimation problem, then, is to find parameters that make the 
residuals as small as possible.  But more on that later.  
 
Q.  The example in equation (2) seems to have some linear parts and some nonlinear parts.  What are 
the names for these parts?  
 
A.  Although this function is clearly nonlinear in the X variables and most of the parameters, it has linear 
components.  Let’s break this down a bit by rewriting the network function as follows:  
 

Y B B H B H ut t t t= + × + × +0 1 1 2 2  (3) 
 
In network terms, each H represents a node in the hidden layer.  And, for the particular specification we 
are using here, the output function, which is shown in (3), is linear in these values.  (The output function 
can be specified to be nonlinear in the H’s, but for most forecasting problems with continuous dependent 
variables, there will be no advantage to this additional nonlinearity.)  
 
Q.  How does each node work?  
 
A.  If we look more closely at the first node (H1), we see a second linear component in the denominator.  
Specifically, the exponent is a linear weighted sum of the input variables, and we will rewrite this linear 
weighted sum as follows:  
 
 Z a a X a X a Xt t t t

1 0 1 1 2 2 3 3= + + +  (4) 
 
Then, with a bit of rearrangement, we have the following:  
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If you are familiar with discrete choice models, you will recognize this as a binary logit, the workhorse of 
market-share modeling.  The linear weighted sum (Z) is the power on e.  If Z is a large negative number, 
H is close to zero.  If Z is 0, H is .5.  And if Z is a large positive number, H is close to 1.0.  In between, it 
traces out an S-shaped function.  If you put this on a spreadsheet and plot H as a function of Z, the result 
is as depicted in Figure 1.   
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Figure 1:  Binary Logistic Function 
 
This also means that there is an S-shaped relationship between each node value (H) and each explanatory 
variable (X) in that node.  This S curve may be positively or negatively sloped, depending on the sign of 
the slope coefficient on the X variable (an,k in equation (1)).  
 
Q.  I see this is nonlinear in the X’s.  What about variable interactions?  
 
A.  The specification is automatically interactive, since we can rewrite the exponential as follows:  
 
 e e e e ea a X a X a X a a X a X a Xt t t t t t

0 1 1 2 2 3 3 0 1 1 2 2 3 3+ + + =  
 
As a result, each X variable interacts with all other X’s that do not have zero slopes in the node.  This is a 
strength of the specification if the underlying process has multiplicative interactions.   
 
Q.  This is a little strange.  Each node has the same functional form.  How does this work?  
 
A.  It is true that each X variable appears several times and, in the case of equation (1), in exactly the 
same algebraic form.  The econometrician in us is not comfortable with this idea.  It looks like an extreme 
form of multicollinearity.  In network language, the repetitive specification is called parallelism or 
massive parallelism, and it is one of the strengths of the approach.  As you might expect, it raises some 
serious issues for parameter estimation.   
 
But, if you think about it, we have all put X and X squared on the right-hand side of an equation.  So 
suppose that in the first node, variations in X cause movement in the linear part of the logistic equation (Z 
between -1 and +1) and in the second node, variations in X are operating in the bottom part of the S shape 
(Z between -4 and -1).  This could happen, depending on the values of the other variables and the 
parameters involved.  
 
With several nodes in the hidden layer, the specification allows for a variety of nonlinearities and for a 
range of variable interactions.  For example, two logistic curves, one positively sloped and one negatively 
sloped, can be combined to give a U-shaped response over the relevant range of an X variable.  Given this 
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flexibility, the estimation problem is to find a set of specific nonlinearities and specific interactions that 
are useful for explaining history and for forecasting.  We will discuss the estimation problem below.  
 
Neural Network Terminology 
Well, if you have made it this far we need to get a bit deeper into the linguistics of artificial neural 
networks before we go back to the original question.   
 
Q.  How would the specification above be described in neural network terms.  
 
A.  In neural network terms, equation (1) has the following properties.  
 

 It is a feedforward neural net with a single output 
 It has one hidden layer with one or more nodes 
 It uses logistic (e-based) activation functions in each hidden layer node 
 It uses a linear activation function at the output layer.  

 
Q.  Why is it called feedforward neural net?   
 
A.  The best way to answer this question is to draw the classic neural net diagram.  As shown in Figure 2, 
the explanatory variables (X) enter at the bottom in the input layer.  The logit tranforms appear in the 
hidden layer.  And the result (Y) appears in the output layer.  
 
The idea is that the inputs feed into the nodes in the hidden layer, and there is no feedback.  Further, the 
nodes do not feed sideways into each other.  Instead, they feed onward to the output layer.  And there is no 
feedback, delayed or otherwise, from the output layer to the hidden nodes.  The absence of feedbacks or 
node-level interactions makes it a feedforward system.  Really, the way it is drawn, it is a feed upward 
system.  
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Figure 2:  Network Diagram with 3 X’s, 2 Nodes 
 
Q.  Why are the terms in the middle called the hidden layer?   
 
A.  There is an answer to this in the neural sciences (see Rummelhart, Hinton, and Williams, 1986).  But 
the answer is of no interest to us as forecasters.  If you look at equation (1), it is clear that nothing is 
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hidden at all.  Represented in diagram form, as in Figure 2, there are specific algebraic transformations in 
the middle layer, but they are hidden only if we decide to hide them somehow.  The important and 
powerful part of the specification is that it is a flexible form capable of approximating a wide range of 
functions.  Analogies to the learning process of the brain do not increase or decrease the power of this 
approximation.  Neither do these analogies help us to understand how these equations work in a 
forecasting context.  
 
Q.  Why is the binary logit in the hidden layer called an activation function?   
 
A.  It refers to the S-shaped nature of the function in each node and the fact that the boundary values (0 
and 1) can be related to on and off.  Again, the history of the term is rooted in neural sciences, and it has 
to do with the requirement that a signal must reach a certain level before a neuron fires to the next level.  
This is not a bad description in the forecasting application.  For most forecasting problems, if you allow 
flexibility (more than two nodes), some of the nodes will end up specializing and will activate (take on a 
value close to 1.0) under specific conditions and take on a value of close to 0 otherwise.  To see this for a 
specific problem, all you need to do is plot out the contribution of each node to the total predicted value, 
and this pattern will become clear.  
 
For our purposes, the hidden layer functions do not need to be logistic functions.  Any other S-shaped 
function could be used, such as an arc tangent or a cumulative normal, and the model behavior would not 
be changed significantly.  The important thing is to use a smooth differentiable function that will be easy 
to work with for estimation purposes.  
 
Taking this further, it is not necessary to use S-shaped curves at all.  For example, we could use bell 
shaped functions (like the derivative of a logistic curve) in some nodes rather than S-shaped functions, 
and this would be quite useful in many forecasting applications.  However, as we move away from S-
shaped curves, the term “activation” becomes less descriptive of functional performance, since the 
alternative functions would no longer range between 0 at one extreme and 1 at the other.  As a result, the 
hidden node activation functions are sometimes called neuron transfer functions (see, for example, Azoff, 
1994, pp 51-55).  
 
Q.  Why use a linear activation function at the output layer?  
 
A.  We could include some additional nonlinearity at this level.  In fact, we could include about any 
nonlinearity that can be written down.  For Y variables that have a discrete outcome, such as a binary 
(0/1) variable, a logistic activation function at the output layer would probably be desirable.  But for most 
problems with continuous outcomes, there is no real gain from a further nonlinearity at this level.   
 
Estimation Approaches 
You are probably still confused about estimation.  How do we estimate the parameters of the network 
equation?  In network terminology, these are called the connection strengths.  The constant terms are 
called bias parameters and the slope terms are called tilt parameters.  No matter what we call them, 
however, they are still parameters.  And the goal of estimation is to find a set of parameter values that 
make the errors small.  
 
Q.  Given the repetitive specification, how does estimation work?  
 
A.  There is no single answer to this question.  There appear to be as many specific estimation algorithms 
as there are people who have worked on these algorithms.  However, many neural network programs use 
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some variant of a method called the generalized delta rule or the method of backpropogation.  Here is 
how it works in its simplest form.  
 
First, you select a set of random starting values for the coefficients within a range that makes sense for 
your data.  These values probably won’t work very well, but they will allow you to compute a residual for 
each observation and the derivatives of each residual with respect to each of the parameters.  Then you 
can take the following steps:  
 

1. Apply the current parameters to the first observation and compute a residual 
2. Compute the derivatives (gradient) of the residual with respect to each parameter 
3. Take a small fraction of the computed residual 
4. Adjust parameters by the product of this fraction and the negative gradient 
5. Take the adjusted parameters to the next observation and repeat steps 1 to 4 
6. When you finish working through the data set 

─ Check for parameter convergence or other stopping criteria 
─ If not done, go back to the beginning of the data and repeat steps 1 to 5. 

 
So the idea is that you use the parameters to compute a residual, and then you use the residual to adjust 
the parameters (which is the “back” part of backpropogation).  For example, if the residual is positive, 
implying that the actual is above the predicted value, you would adjust the intercept and any slopes that 
are positively related to the predicted value upward a bit.  And you would adjust any slopes that are 
negatively related to the predicted value downward a bit.   
 
Of course, there is more to it than this, and there are many variations on the backpropogation theme.  For 
example, as you move through the data set, you must reduce the adjustment fraction (called the learning 
rate) downward.  Otherwise, the order of the data would strongly impact the parameter values at the end 
of each iteration, and the algorithm would not converge to a stable parameter point.   
 
Q.  Is there any relationship between this type of algorithm and standard nonlinear estimation 
algorithms?  
 
A.  If you are looking for parallels, it turns out that backpropogation is an application of a statistical 
method called the “method of stochastic approximation” (Robbins and Monro, 1951).  In an econometric 
context, this method has also been called recursive least squares.  It has been shown that simple 
backpropogation with a learning rate that is inversely proportional to the observation number is equivalent 
to the recursive least squares approach (see White, 1989 for a discussion).  Recursive least squares is not 
widely used in econometrics today due to the widespread availability of fast matrix inversion algorithms 
and nonlinear optimization algorithms.  
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Q.  Are there alternatives to this type of estimation approach?  
 
A.  Yes.  The goal of estimation is both familiar and straightforward.  The goal is to find a set of 
parameters that make the in-sample residuals small.  If you look around a bit, you will find that there are 
several ways to do this.  Some examples are:  
 

 Recursive algorithms, such as backpropogation.  
 Optimization algorithms, such as conjugate gradient, Newton methods, and steepest descent. 
 Least squares algorithms, such as Levenberg Marquat, which blends Newton and steepest 

descent. 
 Evolutionary or genetic algorithms. 

 
These algorithms all have their place.  But in forecasting problems, the goal is the same:  to find 
parameters that make the errors small.  Consider the alternative (algorithms that make the errors large), 
and the appeal of this goal is pretty obvious.  
 
More specifically, from a forecaster’s perspective, the real goal is to find parameters that generalize to 
make the out-of-sample forecast errors small.  And if flexible nonlinear systems, such as the neural net, 
allow us to reach this goal, then we should embrace them.  
 
Q.  Do backpropagation algorithms minimize the sum of squared errors?  
 
A.  Not necessarily.  For a given random starting point, these algorithms are intended to gravitate toward a 
parameter solution that makes the residuals small.  But they do not necessarily find a local minimum to 
the sum of squared errors, or the average absolute deviation, or any other specific objective function.  
However, with appropriate treatment of the learning rate, it can be shown that the backpropogation 
solution will converge to a local solution to the least squares problem (see Kuan and White, 1992 for a 
discussion).  
 
Estimation Complexities 
Q.  It still seems that the estimation problem isn’t very well defined.  Is it possible that the estimation 
algorithms will converge to a local solution that doesn’t really minimize the sum of squared errors?  
 
A.  This turns out to be a really good question and one that causes great concern to neural network 
practitioners.  After significant analysis of this issue, we have concluded the following.  If there is one 
node in the hidden layer, the objective function is well behaved, much like a linear least-squares problem.  
Regardless of where you start the initial parameter guesses, you will converge to a comparable parameter 
solution.  
 
However, as nodes are added, the objective function quickly becomes very complex with an explosive 
number of solutions that are locally optimal.  As a result, to find a good solution it is necessary to look 
around in parameter space.  Merely going downhill from a single random starting point to the nearest 
local optimum simply will not do the job.  And this is true whether you use a backpropogation algorithm 
or a mathematical optimization algorithm.  
 
The magnitude of this problem was quantified in a recent paper (Goffe, Ferrier, and Rogers, 1994).  In 
this paper, the authors examined several estimation problems, including one that involved a neural 
network like the one specified above.  In addressing this problem, the authors became interested in the 
shape and properties of the objective function.  The problem was a modest one, involving a 5-node 
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network with a total of 35 parameters.  As alternative solutions were examined, it became apparent that 
the objective function had a large number of local optima.  By pushing out from each optimum point and 
seeing if estimation returned back to this point, they were able to quantify the size of the region 
dominated by each optimum point.  Taking this region as a fraction of the total parameter space for their 
problem, the determined that there were about 1019 such points for their problem.   
 
This is a lot of points.  As an analogy, consider a two parameter problem (so we can visualize the surface 
of the SSE function).  Think of the objective function as looking like the bottom half of an egg carton, 
with 1 dozen local minimum values of varying depths in each carton.  Now think of a football field 
covered with such cartons.  Now think of the state of Texas covered with such cartons.  Now think of the 
surface of the earth covered with such cartons.  Now think of 64 times the surface of the earth covered 
with such cartons.  You now have a big enough surface to contain 1019  local optimum points.   
 
So suppose that you pick a random starting point and it turns out to be on the 50-yard line of a high 
school football field in the middle of Texas.  Look around at the football field, out toward the state 
boundaries, and imagine the 64-earth surface from this point and you start to understand the magnitude of 
the estimation problem.  Somewhere on that surface are several mathematically equivalent global 
optimum points.   
 
Q.  Is it possible to find the global optimum?  
 
A.  For their problem, Goffe, Ferrier, and Rogers concluded that “the nature of the (neural network) 
function makes it virtually impossible for any method to find the global optimum.”  They also concluded 
that “given the relative values of the optima, it would appear that each local optima would need to be 
examined to find the global optima.  Given the number of local optima, this hardly appears likely given 
current or foreseen computers.”  And these guys aren’t talking about PCs;  they were working on a Cray 
computer at the University of Texas.  
 
Q.  This sounds pretty hopeless.  Is there any way to guarantee finding a reasonably good solution?  
 
A.  Actually, it is not as bad as it sounds.  As it turns out, there are a large number of local optima that 
work pretty well for typical forecasting problems.  But we still need to look around a bit to make sure that 
we settle into one of the better solutions.  Several approaches have been examined, including:  
 

 Simulated annealing 
 Genetic algorithms 
 Multiple seed optimization. 

 
We won’t go into each of these here, but the advantage of these approaches is that they allow the 
parameter terrain to be searched to some degree, reducing the probability of settling into a substandard 
local optimum.  The joint process of searching and optimizing is called training, and once the model is 
trained, it can be used to forecast.  
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Q.  With econometric models, we often examine different variables, different functional forms, and so 
on.  How does this relate to the training process?  
 
A.  There are strong parallels here.  Recall that the neural network is a flexible nonlinear model.  Each 
local minimum represents a specific set of useful nonlinearities and variable interactions that combine to 
make the residuals small for the sample data.  So, selecting a specific solution is very similar to selecting 
a functional form.  There is a difference, however.  In selecting a final model in econometrics, there are 
often qualitative criteria involved, such as the signs of parameters and the absolute magnitudes of model 
elasticities.  In training a neural net, the final parameter solution is usually selected on the basis of fit 
alone.  
 
Q.  In the training process, what types of criteria are used to select among competing parameter 
solutions?  
 
A.  Many algorithms estimate parameters on a subset of the data and use the withheld data to test the 
power of the estimated parameters out of sample.  This is like using an in-sample forecast test to choose 
among competing econometric specifications.  So, when comparing solutions, you have a choice between 
in-sample statistics and out-of-sample forecasting statistics.   
 
Usually, solutions that perform well in sample also perform well out of sample.  But this is not always the 
case.  Especially with a large number of nodes, some of the solutions will be more specialized to the 
specific cases in the sample, and some will be more stable and more useful out of sample.  So, when 
forecasting is the goal, it is probably better to choose a specification that performs well out of sample, 
based on statistics such as the MAD and MAPE.  
 
Q.  What do you do as new data become available?   
 
A.  Let’s think about this from the perspective of econometric or time-series models first.  With these 
models, you have two options.  You can continue to use the parameters that came out of the initial 
estimation or you can extend the sample period to incorporate the new data and reestimate.  Normally, as 
time moves forward and new data are generated, you just update the estimates using the extended sample 
period.  In absence of weighting, the new data get the same weight in this update process as the earlier 
data.  
 
It is not that different with neural networks, especially if an optimization algorithm is used.  In this case, 
you start with the parameters from the training (estimation) process and reoptimize with the new data 
included.  Usually, this will result in small and gradual changes in the parameter estimates.   
 
Similarly, using backpropogation algorithms, the learning process is just an extension of the training 
(estimation) process.  That is,  
 

 Start with the parameters from model training 
 Compute a residual for the new observation 
 Compute the derivatives of the residual with respect to the parameters 
 Adjust parameter up if this reduces the residual 
 Adjust parameters down if this reduces the residual. 

 
The direction that parameters adjust is determined by the derivatives of the residual with respect to each 
parameter, and the actual adjustment is determined by these derivatives and the learning rate.  For stable 
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problems with large data sets, the learning rate will usually be small, resulting in small and gradual 
changes in the parameters as additional data are included.  
 
Q.  Is there ever a need to retrain the model?  
 
A.  Yes.  With an econometric model, you can update the parameters on a monthly basis with a minimum 
of effort.  But at some point, you may want to reconsider the specification itself.  This is equally true with 
neural networks.  If you think about training as automated selection of a specification, the parallel is clear.   
 
The point is that after significant time has passed, the additional data might be better fit by an alternative 
set of nonlinearities and interactions.  But it is very unlikely that reestimation or continued learning will 
get to one of these better points starting from the estimated parameters that are in place (think back to the 
64-world surface).  So, on occasion, it is a good idea to return to the training exercise to insure that you 
are still working with a relatively good solution.  
 
Summary Statistics for Neural Networks 
Thinking of neural networks as flexible nonlinear models, there are a wide variety of standard statistics 
that can be used to evaluate the performance of the estimation result.  Once parameters are estimated, a 
full set of residuals can be computed for in-sample and out-of-sample observations.  In some cases these 
statistics are not presented by neural network software.  Thus, the following questions.  
 
Q.  Can you compute the regular test statistics, such as standard errors and t statistics for the estimated 
coefficients of a neural network?  
 
A.  In part, this depends on the method that is used.  With backpropogation approaches, there is no natural 
extension of the calculations that gives such statistics.  However, if you view this as a least squares 
problem and use standard estimation algorithms, you can derive an estimated parameter covariance matrix 
and standard errors for each estimated coefficient.  Given the nature of the objective function, it is not 
clear exactly how to interpret these statistics.  Furthermore, given the strategic redundency in the 
specification, it is not clear what it means to apply the standard tests to an individual parameter in one of 
the nodes.  Still, these statistics have some local properties and can be used to identify which variables 
play a statistically important role in each of the nodes.  
 
Q.  What are good statistics to evaluate the model fit?  
 
A.  Since there are a full set of residuals for the model, all the standard statistics can be computed.  These 
include:  
 

 Sum of squared errors 
 R square 
 Adjusted R square 
 Standard Error 
 Mean absolute deviation (MAD) 
 Mean absolute percentage error (MAPE). 

 
These statistics are computed from the residuals exactly as they would be for an econometric 
specification.  If there are out-of-sample data points, then forecast MAD and MAPE statistics can also be 
computed.  When comparing alternative parameter solutions in the training process, all of these statistics 
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are relevant.  For example, you might decide to select a solution based on its out-of-sample MAPE rather 
than the in-sample sum of squared errors.  
 
Q.  What about properties of the error term?  
 
A.  Properties of the error term have not received much attention in the context of neural networks.  In 
part, this reflects the type of problems to which they have most often been applied, many of which fall 
into the area of pattern recognition.   
 
In a time-series context, however, the error term for a neural network model faces the same potential set 
of issues as in a linear model.  There may be excluded variables, errors in variables, or an unspecified 
residual process implying that there is still information remaining in the estimated residuals.  From a 
forecasting perspective, this may be important information.  For example, in a “next-day” forecasting 
context, if the residuals reveal a significant pattern of autocorrelation, then yesterday’s residual has 
important information for today’s forecast, and a better forecast can be made by accounting for this 
information. 
 
The standard statistics can be used to evaluate residual behavior, including the following: 
 

 Durbin Watson statistic 
 Ljung-Box statistic 
 Residual autocorrelations 
 Residual partial autocorrelations. 

 
If these statistics indicate that the residuals follow a time-series process, such as an AR process or a short 
MA process, then the nonlinear estimation algorithm can be extended to include estimation of the 
parameters of the ARMA process.  
 
Q.  How can you evaluate the signs of model sensitivities and elasticities?  
 
A.  In a linear model, this is pretty straightforward.  Each explanatory variable has a slope parameter, and 
this slope equals the derivative of the predicted value with respect to that variable.  The slopes can be 
converted to estimated elasticities by multiplying by the ratio of the dependent variable to the explanatory 
variable, using mean values or end-of-period values, for example.  
 
For neural networks, the result is similar, but significantly more complicated.  Because of the 
nonlinearities and interactions inherent in the specification, the derivative of the predicted value with 
respect to an explanatory variable can take on a different value for each observation.  Fortunately, this 
slope is easy to compute.  Similarly, since the slope is a variable, the elasticity will take on a different 
value for each period.  The best thing to do is to compute these slopes and elasticities and view them as 
numbers and as graphs.  These are the model sensitivities inherent in the estimated network coefficients, 
and they will need to be looked at and evaluated.  
 
In fact, one of the potential uses of neural networks is to do exploratory analysis.  For example, you can 
place your data in a network with a small number of nodes, do some training, and look at the pattern of 
the slopes and elasticities over time.  Analysis of these results can lead to a better understanding of the 
factors that determine how model sensitivities vary over time and which variable interactions are 
important.   
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Q.  Can statistics help you determine the number of nodes?  
 
A.  Probably.  Although there is no hard and fast rule, for most time-series problems that we have looked 
at the optimal number of nodes appears to be between two and five.  Of course, as you add nodes, the in-
sample fit always improves.  That is, the sum of squared errors will always decline if you add more 
parameters.  However, beyond a point the coefficients have the freedom to specialize in order to explain 
specific events in the sample period, and these specialized results do not necessarily generalize to out-of-
sample conditions.  Flexibility turns out to be a bad thing when taken to excess.  And by a bad thing, we 
mean that it will lead to worse forecasts.  
 
Statistics that are relevant to this issue are:  
 

 Adjusted R Square 
 Akaike Information Criterion (AIC) 
 Bayesian Information Criterion (BIC). 

 
All of these statistics go down when the sum of squared errors is reduced, but impose a penalty for the 
increased number of coefficients.  In a time-series context, the AIC and BIC are often used as indicators 
of model power.  Coefficients are added as long as these statistics decline.  When they start to increase, 
this is a sign that it is time to stop.  These statistics may also be a good guide for neural network 
modeling.  
 
Back to the Original Question 
This brings us back to the original question.  As discussed above, the most frequently used neural network 
specification uses an e-based (binary logit) activation function in the hidden layer.  Why not a π-based 
version?  We could then call it a π-gistic activation function or simply a πgit.   
 
Q.  So, why not π? 
 
A.  As far as we can tell, there are two reasons to use e, both of which are pretty good ones and neither of 
which involve the theoretical high ground.  First, it seems to work pretty well for a broad class of 
forecasting problems.  Second, it is easy.  It is easy, because it is really simple to take derivatives when e 
is involved.  Specifically:  
 

 
∂
∂
e
x

e
x

x=   (6) 

 
That is about as simple as it gets.  And it makes computation of the derivatives of (1) with respect to the 
parameters really easy.  But, if we used π, it would not be much harder since:  
 

 ( )∂π
∂

π π π
x

x x

x
= × = ×ln .1145  (7) 

 
So, given that using π is also easy, it boils down to a fundamental question:  Which does the best job of 
forecasting?  We don’t propose to answer that question definitively here.  In fact, intuition suggests that 
there is no definitive answer.  But we will test the relative merits of e-based and π-based activation 
functions in terms of forecasting power for a specific problem.  
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Data 
The data used to test the specifications are for monthly residential electricity consumption in the state of 
California.  The data extend from 1977 through 1995, giving a total of 228 observations.  Explanatory 
variables include the following:  
 

 Number of residential electricity customers 
 Monthly heating degree days (base 65) 
 Monthly cooling degree days (base 65) 
 Month (Jan=1, Feb=2, …, Dec=12) 
 Winter season binary variable (=1 in Dec, Jan, Feb) 
 Spring season variable (=1 in Mar and Apr, =.5 in May) 
 Summer season variable (=.5 in Jun, =1.0 in Jul and Aug, =.5 in Sep) 
 Average price of electricity. 

 
The variable for heating degree days provides a measure of cold temperatures, and in each month it 
accumulates the differences between 65 degrees and daily average temperatures, when the daily average 
temperature is below the 65 degree threshold.  Similarly, the variable for cooling degree days provides a 
measure of hot temperatures, and in each month it accumulates the difference between average 
temperatures and 65 degrees, when the daily average temperature is above the 65 degree threshold.   
 
Estimation 
With these eight variables, each node in the hidden layer adds 10 coefficients, including the constant and 
eight slopes in the weighted sum for the node and the overall slope coefficient for the node.  Model 
parameters are estimated by picking a random starting point and minimizing the sum of squared errors 
using a Levenberg-Marquadt algorithm.  Full model training involves estimation with a large number of 
random seeds, and selection of the starting point that fits well in both the estimation period and the test 
period.  
 
First, the standard neural network equation (1) is estimated with the number of nodes ranging from two to 
eight.  For each specification, 400 alternative sets of random numbers are used.  Each estimation includes 
monthly data from 1997 through 1993, for a total of 204 sample data points.  The last 24 observations (for 
1994 and 1995) are reserved as a test period for evaluation of forecasting power.  In the test period, actual 
values of the explanatory variables are used as inputs, and residuals are computed as actual consumption 
less predicted consumption in each month.  
 
 
Table 1 presents the average results from these training runs in terms of in-sample error statistics and out-
of-sample statistics.  
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# of 
Nodes 

# of 
Coefs 

Sample  
SSE 

Sample 
MAD 

Sample 
MAPE 

Forecast 
MAD 

Forecast 
MAPE 

Sample 
BIC 

1 11 6716 145.4 3.13% 147.2 2.70% 10.69 
2 21 3689 105.0 2.25% 125.5 2.24% 10.35 
3 31 2332 84.0 1.80% 129.7 2.27% 10.15 
4 41 1726 72.5 1.55% 137.9 2.41% 10.11 
5 51 1367 64.6 1.37% 137.1 2.39% 10.14 
6 61 1137 58.6 1.24% 140.2 2.45% 10.22 
7 71 973 53.6 1.13% 145.3 2.54% 10.32 
8 81 824 49.0 1.03% 149.4 2.62% 10.42 

Table 1:  Training Statistics:  Average of 400 Random Starting Points 
 
As is clear from the table, the in-sample statistics improve steadily as the number of nodes is increased.  
However, the forecast statistics from the test period indicate that two or maybe three nodes are optimal 
from the perspective of this specific forecast period.  Also, the Bayesian Information Criterion (BIC) 
suggests somewhere between three and five nodes.  
 
In addition to the averages across random starting points, it is instructive to look at the distribution of 
solutions.  For the 3-node system, Figure 3 shows the distribution of sample period MAPE values for each 
of 1,000 random starting points.  From each starting point, the optimization algorithm finds a nearby 
parameter point that provides a local minimum to the sum of squared errors.  As seen in Figure 3, the 
solutions have in-sample MAPE values that range between 1.65% and 2.25%.   
 
Figure 4 shows the comparable distribution for MAPE values over the two-year test period.  These values 
range from 1.5% to over 3.0%.  The two spikes in these charts correspond to two types of parameter 
solutions that were reached from a wide range of starting points.  Each of these “popular” solutions are 
reached from over 100 of the 1,000 starting points.   
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Figure 3:  Sample Period MAPE Values – 3 Nodes, 1,000 Trials  
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Figure 4:  Forecast Period MAPE – 3 Nodes, 1,000 Trials  
 
Figure 5 provides a scatter plot of the in-sample MAPE values and the forecast MAPE values.  The 3-
node models that fit history best appear toward the left of the chart.  As is evident, these models do not 
necessarily provide the best forecasts, which appear toward the bottom part of the chart.  For training 
purposes, it makes sense to select a solution that is in the lower-left-hand portion of the chart, indicating 
that it fits both history and test-period data well.  This type of solution represents a set of nonlinearities 
and interactions that fit the data well and that also generalize well in terms of performance out of sample.  
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Figure 5:  Sample Period MAPE – 3 Nodes, 1,000 Trials  
 
Figure 6 shows model performance over the last five years of the sample period and the two-year test 
period.  The specific model that is depicted corresponds to one of the better fitting of the two “popular” 
solutions, and the MAPE point for these solutions is circled in Figure 5.  With the exception of July and 
August of 1996, in the test period and August of 1990 in the sample period, the model fit is excellent, and 
provides better tracking and forecasts than a wide variety of regression models that were examined for 
these data.  
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Figure 6:  Actual and Predicted Values – 3 Node Network 
 
As a final element, the model elasticities for heating degree days and cooling degree days are shown in 
Figure 7 and Figure 8.  As would be expected, the elasticities of electricity use with respect to cooling 
degree days are most evident in the summer months.  In these months, the typical value is about .2, 
indicating that a 10% increase in cooling degree days will cause a 2% increase in monthly electricity use.  
In contrast, the elasticity for heating degree days switches sign.  In winter months, cold weather increases 
heating loads.  However, since most heating systems are not electric, the elasticity is modest, at about .10.  
In the summer months, the elasticity is negative, indicating that cool weather reduces cooling loads.  
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Figure 7:  Elasticity of Consumption with respect to Cooling Degree Days 
 



 Technical White Paper 

18 

-0.150

-0.100

-0.050

0.000

0.050

0.100

0.150

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

 
Figure 8:  Elasticity of Consumption with respect to Heating Degree Days 
 
e-based Versus π-based Models 
Given this background about neural networks applied to these data, the final step is to see how models 
perform when π-based equations are used instead of e-based equations.  Using S-shaped curves that are π-
based, the neural network specification in (1) is as follows:  
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The relative performance of the two modeling approaches is summarized in Table 2.  The model statistics 
presented in this table are the average sample and forecast statistics based on 1,000 alternative random 
starting points for each specification.  As the statistics indicate, the performance of the two models is 
virtually identical, with a slight edge in favor of the e-based systems.  So, we have an answer to the 
question, why not π?  Using e-based curves is a little easier, and, for these data, at least, the e-based 
curves work a little bit better.  
 

 
Method 

Average 
Sample 
MAPE 

Average 
Forecast 
MAPE 

Average 
Sample 
MAD 

Average 
Forecast 

MAD 

Logistic (e-based) 1.81 2.28 84.4 130.5 

π-based  1.82 2.29 84.8 130.9 

Table 2:  Comparison of Model Statistics (e versus π) 
 
Conclusion 
Artificial neural networks provide a flexible nonlinear framework with many similarities to structural 
econometric models.  These models are well suited to the forecasting task for data like the monthly sales 
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data analyzed here.  However, there is a danger that the approach will be treated as a black-box that is 
difficult to understand.  As we have shown here, these models have much in common with standard 
econometric approaches, and can be discussed in terms that are familiar to individuals who are 
comfortable with structural econometric forecasting.  
 
However, there is new ground here as well.  The key difference is in the flexibility of these models.  
Estimation of parameters is a bigger task because the models are nonlinear and because the training 
exercise amounts to a search for a useful functional form.  For a given number of nodes, training involves 
the search for a set of nonlinearities and interactions that provide the best model fit to the historical data.  
The objective function for error minimization is exceedingly complex, because there are a large number 
of solutions that are locally optimal and that fit the data well.  As a result, it is necessary to search 
parameter space to find a good solution, one that works well both in sample and in reserved test periods.  
These solutions can also be evaluated and compared based on model derivatives, elasticities, and a variety 
of standard model statistics.  
 
As long as the number of nodes is kept to a reasonable level, the result is a forecasting model that is 
powerful, robust, and sensible.  This method is useful for forecasting and also for exploratory analysis 
that can be used to examine issues related to functional form.  The results can be used directly, and they 
can also be used to strengthen econometric models through the identification of important nonlinearities 
and interactions.  
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