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The population statistics block in the figure shows the number of observations (days) in the data and the average daily energy value. 
The second block shows statistics computed from the deviations of daily energy around the average value. The statistics are computed 
as though the deviations are model errors, which they are if you have an extremely naïve model that uses the average value as the model 
predicted value. With this interpretation, the statistics are:

	» SSE – Sum of squared errors

	» MSE – Mean squared error (SSE/N)

	» RMSE – Root mean squared error (Square root of MSE)

	» MAD – Mean absolute deviation

	» MAPE – Mean absolute percentage error

As you will see later, the SSE and MSE values are relevant to decision tree mechanics. The other statistics are included because they 
are easier to look at and understand. That is, for most people, it is much easier to relate to the MAD (currently =at 34.1 MW) or the 
MAPE (currently at 12.5%) than to the SSE (currently at 1,971,507). 

Decision Trees methods date back to the 1960’s and are an important part of the data-science playbook. The early 
work dealt mostly with classification problems (Decision Tree Classifiers or Classification Trees). But the methods 
can also be used to model continuous variable outcomes (Decision Tree Regressors or Regression Trees). There 
are several variations, and the focus here will be on three:
	 1.	Decision Tree Regressor (DTR) 

	 2.	Gradient Boosting Regressor (GBR) 

	 3.	Random Forest Regressor (RFR)

This paper provides details on how these methods work and how they perform when applied to the prediction of daily energy for an 
electric load zone. The next section provides a summary of the data that are used and a brief discussion of an OLS regression model that  
is used as a performance benchmark.

If you are new to decision trees, you will learn a lot about how they work and how they perform for daily energy prediction. If you are an 
experienced data-science type, you are likely to see a few new slants on how these models work and some new thoughts on feature 
engineering for daily energy forecasting. 

DATA AND OLS BENCHMARK MODEL

Figure 1 shows daily energy in GWh on the Y axis and daily average drybulb temperature on the X axis. Each point in the figure 
represents one day. The points are color-coded by day type to show weekdays, weekend days, and holidays.

	 Figure 1: Daily Energy vs Daily Average Temperature

Daily energy is computed from hourly system loads for Dominion Virginia Power. Daily 
temperature is computed from hourly values provided by AccuWeather for several 
weather stations in Virginia.



To judge the accuracy of the decision tree methods, an OLS regression model is used as a performance benchmark. To capture the 
obvious nonlinear relationship between energy and temperature, the regression model uses a series of Heating Degree and Cooling 
Degree variables. Additional factors are binary variables for month and day of the week, holiday variables, a time-trend variable, and cloud 
cover and wind speed variables that interact with temperature. The specification is a solid and proven one for modeling daily energy, and 
we will see how decision tree models stack up against this benchmark. For reference purposes, the estimation MAPE for the benchmark 
regression model is 1.43%, so we are working toward that. 

DECISION TREE REGRESSORS (DTR)

Before discussing terminology, let’s build a simple Decision Tree Regressor for the daily energy data using daily average temperature as 
the only explanatory factor. Applying this method in Python with a single parameter setting (maximum leaf nodes = 10) produces the 
decision tree shown in Figure 2.

	 Figure 2: Simple Decision Tree With 10 Leaf Nodes

Focus first on the top box (the Root node). All the observations are there, and the count is the same as in Figure 1 (1,095 cases). The MSE 
is the same as in Figure 1 (1,800). The average value is the same as in Figure 1 (275.66). So, Figure 1 is a good representation of what is 
happening in the Root node. We are just computing the average value of all the data and computing statistics from the deviations around 
this average.

The blue boxes, including the root node, represent decision nodes and the first line in each blue box shows the split rule. The split rule for 
the root node is T <= 75.358, where T is the daily average temperature. The branch to the left is for cases where the daily average 
temperature is at or below 75.358 and the branch to the right is for cases where the daily average temperature is above 75.358. We will 
discuss later how this split value is determined.

Starting at the root node, any temperature value that you pick will trace down through the decision nodes and end up in one of the red 
boxes, which are the terminal nodes or leaf nodes. We specified that we did not want more than 10 leaf nodes, and we got exactly 10. 
The splitting would have gone on much further had we not imposed this or some other limitation as a hyperparameter of the DTR model.

In each box, three statistics are computed from the data in that box. Samples is the number of data points in the box. Value is the average 
value of data points in the box. MSE is the mean square error, computed from deviations around the average value in each box. 

In Figure 2, the MSE values in the leaf nodes range between 96 and 327. This is a large improvement relative to the root node MSE value of 
1,800. Model summary statistics are shown in the upper right-hand corner of Figure 2. With this simple 10-leaf decision tree, we have 
reduced the model MSE to 210.8 and the model MAPE to 4.2%. This is a big improvement from where we started in the root node, which 
had a MAPE of 12.5%.



If you look at the first red box on the far left, this contains the coldest days (at or below 28.462 degrees). You can see that the box contains 
data for 26 days and the average energy value is 394 GWh. If you look at the red box on the far right, this contains the hottest days (above 
81.9 degrees). This box contains data for 16 days and the average energy value is 365.9 GWh.

It’s a bit difficult to see because of all the split criteria, but as you move from left to right the red boxes move from colder days to warmer 
days. If you look closely, you will see that the split temperatures are not evenly spaced. A good way to understand this is to overlay the split 
temperature values on the scatter plot of daily energy versus temperature, as is shown below in Figure 3.

In Figure 3, each of the vertical blue lines represents one of the blue-box split temperatures from Figure 2. Each of the horizontal red lines 
represents the average daily energy use value in the corresponding leaf node. So, the red line in Figure 3 is the estimated DTR model 
shown as a step function. For any daily temperature value, the horizontal red line gives the corresponding daily energy prediction from the 
DTR model.

	 Figure 3: Depiction of 10-Leaf Decision Tree Predictions

Decision tree models are called “nonparametric,” meaning that there is not a specific functional form such as a linear equation with 
slope parameters. Instead, the estimated model is defined by the split values that guide a temperature input to a leaf node. Once you 
get to a leaf node, you find the predicted value for that node. That is all there is. One of the advantages often mentioned for DTR models 
is that they are easy to understand, and in this case, with a single explanatory variable, that is the case. We will see that it gets a bit 
harder to understand when more explanatory factors are added to the model.

We could build the same model with a regression by defining binary variables that are “on” when the temperature falls in one of the 
leaf node boundaries and “off” otherwise. The estimated coefficients on these binary variables would be exactly equal to the averages 
within each leaf. This would be a nonparametric regression in the sense that there are no “temperature slope” parameters. But we 
would have to know the split values in advance to do this. The DTR model finds the split temperatures for us.



Decision Tree Terminology

As we all know, real trees grow upward. But with decision trees, it is customary to show them starting with the root node at the top 
and growing downward. With this exception, the terminology is relatively intuitive.

	» Root – The starting point that includes all data observations

	» Node – The Root node or a subsequent node created by splits 

	» Branch – A split from a node to a subsequent node

	» Leaf – A terminal node that is not split further

	» Depth – The number of node layers

	» Impurity – The outcome variance within a node (MSE in the example)

All of these concepts are clear in Figure 2, except for the use of the term “impurity.” The term impurity comes from classification problems, 
where the goal is to create leaf nodes that are homogeneous or pure. In the case of continuous outcome data, impurity is measured 
by the variation of outcome values around the average value in each leaf node. In the extreme, if we can create a leaf node where the 
outcome values are all the same, then the node will be absolutely pure (MSE of zero). 

How Splits Work

All Decision Tree methods are based on the idea of splitting, and it is useful to understand how the split criteria is selected. You might 
be thinking that there is some grand strategic scheme here, but in most cases there is not. Let’s focus on the first split in Figure 2 to 
understand how the value of 75.4 degrees was determined. Looking at Figure 1, it is not clear what to expect. In fact, 75.4 degrees 
does not seem to be an obvious outcome. But when you think about it, the goal of the split is to find two groupings that have different 
average values. If the averages in the two splits are similar, there will not be much gain in terms of reduced SSE values. 

To check this out, an Excel spreadsheet was set up to look at all of the possible split values. There are many possibilities since daily 
average temperature (the average of the hourly temperatures) is unique for most days. Figure 4 shows a plot of the results, with 
annotation for the extreme calculations. 

	 Figure 4: MSE Values for Selected Split Temperatures…

Recall that the MSE around the overall average in the root node was 1,800. As Figure 4 shows, we get the same value if we split at the 
extreme cold end (10 degrees) or the extreme hot end (90 degrees), and this happens because there are no observations outside 
these boundaries. Splits near these extreme temperatures also have high MSE values because almost all the observations go to the 
colder node when we split near 90 degrees, and almost all observations go to the warmer node when we split near 10 degrees. We get 
a similarly high SSE value if we split in the middle (55 to 60 degrees). For splits in this range, the average values in the warmer node and 
cooler node are about the same as the overall average, and the SSE reduction is very small. 

To reduce the SSE value, the split needs to result in average values that are different and that have counts big enough on each side 
for the difference in the average to matter. For the problem here, this means that we are either going to split on the cold side (around 
35 degrees) or on the hot side (around 75 degrees). It turns out with these data that splitting on the hot side works better. But there is no 
way to know this without calculating the results on both sides. And that is what decision trees do through brute force calculation of all 
possible splits to find the one that works best.

The split logic is “greedy.” There is no multi-step strategy. When you are splitting a node, there is no looking backward. And there is no 
looking forward to subsequent splits. There is just the opportunity to split myopically the current node, and the split that is chosen will be 
the one that produces the greatest reduction for the node that is being split. 



As shown in Figure 5, the first split has reduced the MSE from 1,800 to 1,295. Referring to the top two blue boxes in Figure 2 you can see 
that the cold side has most of the data (879 days) and an average value of 264 GWh. The warm side has the remaining data points 
(216 days) and an average value of 321 GWh. The process continues from there with the same greedy logic to split each of these two 
nodes. 

If we let this process continue with no limits, we potentially end up with one observation in each leaf node. While this would reduce the 
SSE value to zero, it turns out that the model would not be especially useful for interpolation or extrapolation. This would be an example 
of overfitting. The potential for these types of methods to overfit in this way drives the keen focus of data science on out-of-sample 
testing to make sure that estimated models are useful for prediction and forecasting. 

Deeper Models with Temperature Only

Next, let’s look at more complex (deeper) DTR models with AvgDB temperature as the only variable. Experiments with different ways 
to constrain the complexity of the model suggested focusing on two: maximum tree depth and minimum leaf size. Using 10-fold Train/
Test cross-validation the best out-of-sample results were obtained with the following settings (hyper parameters for the model):

	» Maximum tree depth = 8 

	» Minimum leaf size = 9

With these settings, the estimated model ends up with a total of 115 nodes, 57 or which are decision nodes and 58 of which are leaf 
nodes. In some parts of the data, the leaf nodes are extremely narrow (less than one degree wide). The predicted values from model 
estimation using the full population data set are shown on the left-hand side of Figure 5. 

On the right-hand side is a chart showing the predicted values for a comparable OLS regression model using a set of heating-degree 
variables (HD60, HD55, HD50, HD45, HD35) and cooling-degree variables (CD60, CD65, CD70, CD75, CD80)  
all of which are computed from the same average drybulb temperature that is used in the DTR model. 

By construction, the OLS regression model generates a spline-like curve. In essence, the model is a series of linked slopes, and the 
slope is constant within each degree range. For example, there is one slope for degrees above 65, and then the slope changes for 
degrees above 70. The final slope on both sides (degrees below 35 and degrees above 80) will apply to extreme temperature inputs, 
even if the temperatures are outside the range of the estimation data set. 

Looking at the middle temperatures (55 to 65 degrees), both models find the same “flat” range in the data. For the DTR model, the middle 
leaf node extends from 54.8 degrees to 65.0 degrees and includes 135 observations with an average value of 223.8. For the regression 
model, the slope is small for the first heating variable (degrees below 60) and for the first cooling variable (degrees above 60), and the 
predicted values on both sides are all in a narrow range centered at 225.

The main point where the models disagree is in the extreme left and right nodes, where the DTR model gives an equal forecast for  
all qualifying temperatures and the OLS model follows the slopes for the extreme heating-degree variable (HD35) and the extreme 
cooling-degree variable (CD80).

To test these two models based on daily average temperature, we ran 100 cross-validation tests. Each test estimated the models with 
90% of the data and withheld a random subset of 10% for testing. The resulting statistics are shown in Figure 5. From the Train 
columns, you can see that the in-sample statistics for the DTR models are better than the in-sample statistics for the OLS models. For 
example, the in-sample or training MAPE is 3.37% for DTR and 3.73% for OLS. But the OLS models do slightly better out of sample, 
with a test MAPE of 3.83% compared to 3.99% for the DTR model.

	 Figure 5: Decision Tree and Regression Models using Average Temperature…



Deeper Models with Additional Features

It all gets more complicated with multiple explanatory factors. On the regression side, additional variables can be added by themselves or 
in structured interactions. For example, the wind variable is interacted with heating degrees (expecting a positive effect – on a cold day 
more wind makes it feel colder). The wind variable is also interacted with cooling degrees (expecting a negative effect – more wind on a 
hot day makes it feel less hot). We also interact day-time clouds with heating degrees (expecting a positive effect) and with cooling degrees 
(expecting a negative effect). These expectations reflect the fact that clouds block the direct warming influence of the sun and therefore 
increase heating loads and reduce cooling loads. Also, day-time clouds are included independently, and we expect a positive effect 
since more clouds in the day means less behind-the-meter solar production and therefore greater utility loads. 

For the DTR models, we also need to define the factors to be included in the model. As with regression, the factors can be interaction 
variables. such as a windchill variable that interacts HD and wind. Or we can let the DTR model sort out the interactions, with wind coming 
into play as a split variable when that reduces the errors. The latter approach was taken here and the variables that are included are 
listed below in order of split-1 power. That is, the better a variable does as the split-1 variable, the higher on the list it goes. The list of 
variables is followed by Figure 6, which provides first-split statistics for each variable.

	» AvgDB. This is the average drybulb temperature for each day. It is the most powerful variable and it is selected by the model for making 
the first split.

	» LagDB. This is the average temperature on the day before the current day. It is highly correlated with the current day AvgDB variable but 
is not as powerful and therefore is not selected for the first split. 

	» Lag2DB. This is the average temperature two days prior to the current day. It is still highly correlated with the current day AvgDB. But for 
making the first split, it is a bit less powerful than the one-day lag variable.  

	» Month. This is a categorical variable with values 1 to 12. If this variable was used for the first split, the split value would be at 1.5 which 
cuts out January to one side and all other months to the other side. If we ran this variable deeper, it could split out all 12 months in the end.

	» DOW. This is the day of the week with Monday as 1 through Sunday as 7.  The first split using this variable would be at 5.5, which sends 
Monday (1) through Friday (5) to the left and Saturday (6) and Sunday (7) to the right. We will dig into that in a minute.

	» BankHols. This variable has a value of 1.0 for holidays where banks and most office and government establishments are closed, but 
retail establishments are open. The first split using this variable would be at .5.  This is the only thing that can happen, since this is a 
binary variable. It is very “unbalanced” and is not used much in the models.

	» RetailHols. This variable has a value of 1.0 for the remaining holidays where most retail establishments are closed (in the US 
Christmas, New Years, and Thanksgiving are in this list). Again, the first split for this variable would be at .5 which is the only possible 
split with a binary variable.

	» Trend. This is a trend variable that is 0 in 2010 and gains about 1/365 every day. The first split using this variable would be at 7.44 
which turns out to be in early June of 2017. 

	» AvgClouds. This is the average of day-time cloud cover values, where clouds are measured on an octa (0 to 8) scale. The first split 
for this variable would be at 4.98 which puts partly cloudy days on the left and cloudy days on the right. This does not do much as 
a stand-alone variable because it needs to interact with temperature. In the DTR model, the early splits will be on temperature, and later 
splits based on clouds will occur independently for hot days and for cold days.

	» AvgWind. This is the daily average of hourly wind speed in miles per hour. The first split for this variable would be at 5.01 which puts 
relatively calm days on the left, and windier days on the right. Like clouds, wind does not do much as a stand-alone variable because  
it needs to interact with temperature. Wind on a hot day lowers energy use. Wind on a cold (wind chill) increases energy use.

	 Figure 6: Additional Features and First Splits as Stand-Alone Variables

Figure 6 is useful for understanding how multi variable DTR models work. To get the numbers above, we had to find the best split in the  
root node for each of the X variables. The one that does the best (AvgDB) is selected and the first split is made. Looking at the estimated 
decision tree, the first few splits are made using this variable and then the other factors start to come into play. At that point, we are usually 
in a narrow temperature range, and we are making further splits on other factors, like day of the week, or month, or clouds.



Feature Engineering

You won’t hear much about feature engineering in Decision Tree modeling. Often the attitude is to give the model the data and let it 
decide what to do. Of course, it is not actually “deciding” anything. It is merely executing a series of greedy splits using the features that 
are provided. However, as the following example illustrates, in some cases feature engineering can make a variable more powerful in 
the split process, and therefore more likely to be used in the model. 

The example uses the day of the week (DOW) variable. Initially, the standard mapping was used where Sunday is 1 and Saturday is 7, as 
is the case in Excel. The results for all possible splits, in this case, are shown on the left-hand side of Figure 7. The best split is 
DOW<=1.5. This splits all observations for Sunday to the left and all other days of the week to the right. Next, the mapping was shifted 
so that Monday is 1 and Sunday is 7. The results for all possible splits with this definition are shown on the right-hand side of the figure. 
The best split is DOW<=5.5, which splits all the weekdays to the left and the weekend days to the right. 

Figure 7: Root Node Splits with Alternative DOW Definitions

The reduction in MSE is twice as big using the Monday = 1 definition, making this a more powerful variable that is more likely to be used. 
With the Sunday = 1 definition, you can split Sundays off to the left and at some other point split Saturdays off to the right, but you can’t 
split them off together. 

We did not get into further feature engineering, although it seems like there could be similar benefit to alternative structuring of some of the 
other explanatory variables.

Multi Variable Decision Tree Regressor (DTR) 

With the full set of factors, the potential complexity of the decision tree is greatly increased. As before 10-fold Train/Test cross 
validation was used to determine the best way to constrain complexity. This process was applied to each step of a model cascade, 
starting with AvgDB as the only variable and sequentially adding additional variable groups. As shown in Figure 8, as additional features 
are added, the optimal depth of the DTR model tends to increase and the optimal minimum leaf size tends to decrease. With the full set 
of features included, the best results were obtained with the following settings:

	» Maximum tree depth = 12 

	» Minimum leaf size = 4

With these settings, the estimated model ends up with a total of 381 nodes, 190 of which are decision nodes and 191 of which are leaf 
nodes.

Figure 8 shows the optimal settings for each step of the DTR cascade on the left-hand side. On the right-hand table, the corresponding 
train and test MAPE values are shown for the DTR model and also for the comparable cascade of regression models. In both cases 
the train/test results are from 100 cross validation tests using shuffle and split with a 10% test fraction. The Train columns show that 
the DTR model does better in-sample for all rows except the very last row. The Test columns show the statistics for out-of-sample 
observations, and the Regression model does better for all rows.  The advantage is strongest for the fully specified model, and the 
DTR MAPE value (2.98%) is almost twice as large as the Regression MAPE value (1.51%). 



Figure 8: Root Node Splits with Alternative DOW Definitions 

The graphs on the bottom of Figure 8 show how the Train and Test statistics evolve through the feature cascade. The first thing that 
stands out is that regression models appear to generalize to out-of-sample observations much better than the DTR models. For all 
feature sets, the Test statistics for the Regression model are only a bit above the Train statistics, with a difference less than .1% in 
most cases. In contrast, for the DTR model, Test statistics are all well above (worse than) the Train statistics, and the gap widens as 
more features are used.

The second thing that stands out is that the regression model becomes more accurate as additional feature groups are added beyond 
DryBulb temperature, Day of Week, and Lag temperature. The Test MAPE at step 3 is about 2.5%, and it finishes at about 1.5% with all 
the features. In contrast, the test MAPE for the DTR models does not improve significantly beyond the initial feature groups, stalling at 
about 3%.

This reflects the fact that the regression model is able to take advantage of secondary variables that interact with heating and cooling 
variables across broad temperature ranges. In contrast, the DTR model is not able to get much power out of the later factors after the 
observations are split into narrow temperature ranges. For example, when you look at the detailed DTR model, variables like Clouds, 
Wind, and Month do appear sporadically as a split variable, but they are not used in the path to most of the leaf nodes.

GRADIENT BOOSTING REGRESSION (GBR)

The second decision tree method explored here is Gradient Boosting Regression (GBR). GBR uses the same splitting idea but applies  
it in a very different way. The following is a simple outline of the method:

	» Compute the deviations around the overall mean value (Step 0 errors)

	» Apply decision tree logic to Step 0 errors and apply learning rate to get Step 1 errors

	» Apply decision tree logic to Step 1 errors and apply learning rate to get Step 2 errors

	» Repeat to get updated errors for Step 3, 4, 5, … 

This is a very different idea, and at first glance, it is not clear how this will work or why it is useful. But it does work, and it is useful, and it 
therefore deserves a deeper dive.



GBR Logic

The following provides a more complete outline of the method. Feel free to skip this unless you like flow charts and equations. The 
method starts with the calculation of the average Y value and then proceeds with a stack of sequential models. At each step, the DTR 
method is applied to the cumulative residuals from the prior step. The predicted residual values at each step are only partially used, 
based on a learning-rate fraction (f). In outline form, the method is as follows: 

	 Step 0:	 Compute average Y value (YAvg). 

		  Use YAvg as the predicted value for all observations (Pred0 = YAvg) 	

		  Compute Step 0 “errors” as E0 = Y – Pred0

	 Step 1: 	 Apply DTR to E0 values using explanatory factors 

		  Compute predicted E0 values (E0_Pred) as the average error in each leaf node

		  Update predicted value: Pred1 = Pred0 + f * E0_Pred

		  Compute Step 1 errors as E1 = Y – Pred1
	 Step 2: 	 Apply DTR to E1 values using explanatory factors

		  Compute predicted E1 values (E1_Pred) as the average error in each leaf node

		  Update predicted value: Pred2 = Pred1 + f * E1_Pred

		  Compute Step 2 errors as E2 = Y – Pred2

	 Step 3 to N: 	 Repeat the process until complexity limits are reached.

This process is represented in Figure 9 with the total number of steps set to 500.

	 Figure 9: Gradient Boosting Estimation Process

In addition to the learning-rate fraction (f), GBR, like DTR, has hyperparameters that limit the complexity of the model. Python has two 
versions of the gradient boosting method (Gradient Boosting Regression (GBR) and Extreme Gradient Boosting Regression (XGBR). 
The following uses XGBR which performed slightly better out of sample. The following settings are available for specifying the gradient 
boosting regression model.

	» n_estimators: the number of estimation steps

	» learning_rate: the fraction of the predicted residuals added to predicted Y at each step

	» criterion: the formula used to make decisions about split factors and values

	» complexity settings: settings that limit the depth or width of the trees at each step

	 -- max_depth – the maximum number of decision tree levels at 	each step	

	 -- max_features – the maximum number of features to use at each step

	 -- min_samples_split – do not split nodes below this size

	 -- min_samples_leaf – do not allow leaf nodes smaller than this

	 -- max_leaf_nodes – do not allow more than this number of leaf nodes

	» stochastic parameters – settings that introduce randomness into the process

	 -- subsample – the number or fraction of the training data to use at each model step

	 -- max_features – the number or fraction of features to use at each split 



If you read up on this, you will find that applications usually end up with the number of estimation steps in the hundreds, with the 
learning rate set relatively low (.10 is the default), and with the complexity settings like max_depth set very tight. It is not at all obvious 
that this should be the best approach, but this configuration often works best in out-of-sample tests. Results for the model of daily 
energy use follow this pattern. Based on a grid search with 10-fold cross validation, the optimal settings are:

	» n_estimators = 500

	» learning_rate = .11

	» max_depth = 2

	» subsample = .8

	» max_columns = 10 (all)

The stochastic parameters (subsample and max_columns) are introduced to provide some random elements to the process. The 
subsample parameter (at .8) means that a random sample of 80% of the training data will be used at each model step. The max_columns 
parameter (if it is set to less than 10) means that a random subset of the 10 features will be used at each split. The idea is to prevent the 
model from over fitting the training data. In many cases, this will improve the out-of-sample accuracy of the model. 

The number of trees in the vertical stack of trees showed strong improvement up to 300 levels and modest improvement beyond that. In 
the parameter grid search with 10-fold cross validation, there was no advantage to going beyond 500. The best value for the maximum 
depth setting is 2. (The best value for maximum leaf nodes was 3, but results were slightly better using max_depth). 

So, this is a tall stack of really small decision trees. Maximum depth = 2 means that, for each step, we split the top node once and then 
split each side again, giving four leaf nodes. That seems abrupt, but it works best (that is, it gives the best out-of-sample results). These 
settings allow the model to do some useful things. For example, the tree for a step can split the residuals on temperature into a hot side 
and a cold side. Then split each side based on windspeed or cloud cover. This allows wind and cloud impacts to be calculated and applied 
to a broad range of temperatures, which is something the DTR model (with a single wide and deep tree) did not seem to be able to do.

GBR Results 

Figure 10 shows comparison of the average value of MAPE statistics for 100 Train/Test model estimations. As shown, the GBR models 
do much better than the DTR models in the out-of- sample tests. In fact, the GBR average MAPE of 1.62 is close to the OLS average 
MAPE of 1.51. It is somewhat of a surprise that this tall stack of weak learners with a small learning rate provides such a powerful result, 
providing one more example of why gradient boosting is sometimes called the Swiss army knife of data science.

	 Figure 10: Comparison of Train and Test Accuracy Statistics

While it was possible to look at the individual trees in the estimated GBR model, it is very difficult to understand how the model is 
actually working. With 500 trees in the stack, each with 4 leaf nodes, there are 2,000 leaf nodes. And, because of the small 
learning rate, each 4-node tree is making a very small contribution to the overall predicted value. But it is apparent that this method 
works quite well, as witnessed by the strong out-of-sample performance. 



A Note on Splitting Calculations 

For DTR, splits were made by minimizing the sum of squared errors, the default option. Other options are available, and GBR maximizes 
the Friedman MSE formula as the default. Other boosting methods, such as Extreme Gradient Boosting, use a similarity gain metric 
which can be extended to include regularization terms. For the problem here, the results did not seem to be sensitive to the choice of 
the splitting metric. Although the formulas look different, it can be shown that (regularization aside) minimizing the SSE, maximizing the 
Friedman MSE and maximizing the similarity gain are equivalent in terms of the split results. Algorithmically it seems like the Friedman 
MSE may be more efficient, but that was not an important consideration for a small data set like the one used here.

RANDOM FOREST REGRESSOR (RFR)

So far, we have looked at Decision Tree Regression (DTR), which is a single deep and wide tree, and Gradient Boosting regression (GBR), 
which is a tall stack of sequential small trees. Random Forests take the idea in a different direction. Instead of a single tree, there are 
many trees. Each is estimated separately, and each is a bit different by design. 

The first reason each tree is different is that estimation is performed using a bootstrap sample of the training dataset. Bootstrap samples are 
constructed using sampling with replacement, and in Python the default sample size is the same as the size of the training data set (it 
can also be set to be smaller if that is useful). In bootstrap samples, some data points will be included multiple times, and some will not 
be included at all. The result is that each tree in the forest is estimated with a different subset of the data and with different weights on the 
observations that are included.

The second reason each tree is different is that each split calculation is made using a random subset of the explanatory features in 
the model. The size of the subset is controlled by the max_features setting. 

By introducing this randomness, each tree will have a unique decision structure. Once all trees are estimated, the predicted values are 
averaged or weighted together to get the overall prediction from the random forest model. 

Random Forest Regressor Logic 

This RFR process is depicted in Figure 11. The number of independent decision trees is a hyper parameter for the model and in 
Python it is controlled by the n_estimators parameter. The complexity of all trees in the forest is determined by a set of depth parameters 
(like max_depth, max_leaf_nodes, and min_node_size). 

The degree of randomness is controlled by the additional parameters discussed above that control the size of bootstrap samples and 
the limit on the number of features included in split calculations. 

	 Figure 11: Depiction of Random Forrest Regressor (RFR) Estimation 



Based on grid search calculations with 10-fold cross validation, the following hyper parameters were selected:

	» n_estimators = 100, the number of trees in the forest 

	» max_features = 8, the maximum number of features to use in split calculations

	» max_samples = 1.0, use all the training data to develop the bootstrap samples

	» max_depth = 13, the maximum depth of each tree in the forest

	» max_leaf_nodes = 250, the maximum number of leaf nodes in each tree.

There were strong out-of-sample accuracy gains as the number of trees increased from 1 to 50, and then weak increases as the 
number of trees was increased further to 100. There was no gain beyond 100 trees. Out-of-sample accuracy improved as the number 
of features used in each split was increased from 4 to 8, and then decreased beyond 8. The max_samples setting was best at 1.0, 
meaning that the bootstrap sample for each tree is constructed to be the same size as the original data set (1,095 observations). 

Random Forest Regressor Results 

Figure 12 shows a comparison of the average value MAPE statistics for the 100 Train/Test model estimations. The results show that 
averaging multiple independent wide trees (Random Forest) is better than a single large tree (DTR) but not as good as a tall stack of 
sequential weak learners (GBR).

	 Figure 12: Comparison of Train and Test Accuracy Statistics

RANDOM FOREST AND GRADIENT BOOSTING COMBINED

The Extreme Gradient Boosting Regressor (XGBRegressor) method in Python is based on the XGBoost library, and it supports a 
combination of the Gradient Boosting and Random Forest ideas. Visualize multiple trees (as in random forest) where each tree is a tall 
skinny boosting tree (a stack of sequential weak learners). This method has two size parameters. First, num_parrallel_trees is the number 
of trees (the width of the forest). Second, n_estimators is the height of the boosting stack for each tree 

This method was applied to the daily energy data with the following settings:

	» num_parallel_tree = 50, the number of trees in the forest

	» n_estimators = 500, the number of levels in each gradient boosting tree 

	» max_depth = 2, the maximum depth of trees in each boosting step 

	» learning_rate = .1, the gradient boosting learning rate 

	» subsample = .7, the fraction of the training set used in estimation

	» colsample_bylevel = .9, the fraction of the features used in estimation

	» reg_lambda = 11, the regularization parameter

With these settings the average MAPE statistics for the 100 Train/Test estimations came out at 1.559, which is about halfway between 
the accuracy of the GBR gradient boosting model and OLS regression model.  



REGRESSION AND GRADIENT BOOSTING COMBINED

In the first step of Gradient Boosting, the average value of the Y variable is computed and residuals are calculated around that 
average. The subsequent boosting steps proceed from this truly naïve initial model. In this section we look at what happens if we 
replace that initial step with the OLS regression model. That is, in step 0, we run the OLS regression and take the residuals from that 
model as the starting residuals for a GBR boosting model. Once that GBR model is estimated, the predicted residual values are added  
to the predicted values from the regression model to get the combined prediction.

In this combined method, the boosting component is an error correction process that is focused on modeling any systematic bias. 
The boosting tree identifies relationships between regression model residuals and the explanatory factors, including possible interactions 
among the explanatory factors. If this error correction process provides better performance in out-of-sample tests, we can expect that 
the combined model will provide a more accurate forecast.

As an aside, this is similar to time-series error correction, such as a regression model with ARMA errors (RegARMA). There is a 
difference, however. There is an argument that RegARMA produces better parameter estimates and more reliable standard error 
estimates for the regression parameters as well as more accurate short-term forecasts. There is no such argument with the 
regression/boosting combination, since the regression parameter estimates and estimated standard errors are not impacted by  
the subsequent boosting model. The main benefit, if the method works, is improved forecast accuracy. (Note, we could apply the 
boosting step to the squared errors to build an error variance model and use the results to do weighted least squares, but that is  
a story for another time). 

The regression model is discussed briefly in the introduction. The boosting model uses the XGBoost version with the following 
settings:

	» n_estimators = 500, the number of levels in the gradient boosting tree 

	» max_depth = 2, the number decision tree levels at each step in the boosting tree	  

	» learning_rate = .1, the gradient boosting learning rate 

	» subsample = .7, the fraction of the training set used in estimation

	» colsample_bylevel = .8, the fraction of the features used in estimation

	» reg_lambda = 11, the regularization parameter

Figure 13 shows the comparison of out-of-sample MAPE values for all the methods discussed above, with an additional entry for 
Regression with an AR1 correction.

	 Figure 13. Comparison of All Methods 
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CONCLUSIONS AND FINAL THOUGHTS

Decision tree regression methods are nonparametric. There are no slope parameters. Just one or more decision trees which are 
defined by split rules that assign an observation to a terminal leaf based on explanatory factor values. Any observations that are 
assigned to a terminal leaf get the same predicted value, which is the average of the training set values in that leaf. 

For the problem analyzed here, which is prediction of daily energy values, the ranking of the core methods is clear. Gradient Boosting 
Regressor is best, followed by Random Forest Regressor, followed by Decision Tree Regressor. Going one step further, a Gradient 
Boosting Forest is a bit better than Gradient Boosting with a single-boosting tree. The boosting methods come close to OLS 
Regression, and it is possible that they would do as well with additional feature engineering. 

Although decision trees are conceptually simple (just a series of splitting rules), it is hard to see how these models work when there are 
multiple explanatory factors and many levels. Whereas a regression model can be decomposed to show the role of each individual 
explanatory variable for each observation, this type of insight is difficult to squeeze out of the decision tree splits. The biggest 
difference is at the extremes, where regression methods will extend the prediction with a temperature slope, but decision trees will 
just return the average value for the most extreme leaf. 

That said, the Gradient Boosting methods are competitive with regression and the possibility of combining the two methods is promising. 


